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ABSTRACT 

The present study deals with two-dimensional convective motion due to the effect of a centrifugal force 
field on a fluid contained between two horizontal concentric cylinders, for the particular case of an adiabatic 
inner boundary (zero heat flux) and a constant heat flux imposed on the outer boundary. The normal 
terrestrial gravity is considered negligible. Governing equations for a two-dimensional flow field are solved 
using analytical and numerical techniques. Based on a concentric flow approximation, the analytical solution 
is obtained in terms of the Rayleigh number and the radius ratio. The numerical solution is based on a 
finite difference method. Results indicate that the flow field always consists of two symmetrical cells at 
incipient convection even at radius ratios near unity. A good agreement is found between the analytical 
and numerical solutions at finite amplitude convection. 
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NOMENCLATURE 

thermal conductivity of the fluid, 
[ W m - 1 K - 1 ] 
dimensionless pressure 
Prandtl number, v/a 
radius ratio, r'2/r'1 
Rayleigh number based on the inner 
radius r'1, βΩ'2r'5q'/vak 
Rayleigh number based on the gap 
between the inner and the outer radii, 
Ra(R- 1)4 

critical Rayleigh number 
rotational Reynolds number, Ω'r'11/v 
dimensionless radial coordinate 
dimensionless sink 
dimensionless time 
time independent dimensionless tem­
perature 
characteristic temperature difference 
dimensionless velocity in r-direction 
dimensionless velocity in co-direction 
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Greek 
a 

β 
μ 

v 

p 
(pc)f 

φ 
Ψ 
Ω 
ω 

symbols 
thermal diffusivity of the fluid, 
(k/(pc)f) [m 2 s - 1 ] 
thermal expansion coefficient of the 
fluid, [ K - 1 ] 
dynamic viscosity of the fluid, 
[ k g m - 1 s - 1 ] 
kinematic viscosity of the fluid, 
[m2s-1] 
density of the fluid, [ k g m - 3 ] 
heat capacity of the fluid, 
[J m-3 K - 1 ] 
angular coordinate 
dimensionless stream function 
angular velocity [ s - 1 ] 
dimensionless vorticity 

Superscripts 
' 

* 
dimensional variable 
refers to physical time dependent 
temperature 
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Subscripts 
1 value on inner cylinder 
2 value on outer cylinder 

Other symbols 
V2 Laplacian operator, 

INTRODUCTION 

Natural convection in rotating fluids has been the subject of many investigations due to its 
diverse applications ranging from large scale systems found in meteorology, oceanography and 
astrophysics1 to small scale industrial devices such as those used in food industry to thermally 
process canned liquids2 and in the manufacture of high quality optical waveguides3. The problem 
is also encountered in the case of rotating machinery, where the centrifugal force may become 
quite high. Some applications have been made by Schmidt4, who used hollow turbine blades 
to increase heat transfer via centrifugally driven convection and found that rotation could 
augment heat transfer in water cooled turbine blades. These past studies may be classified 
according to the direction of the rotation axis which is either vertical, in which case the vectors 
of gravity and rotation do not coincide5 or horizontal, in which case these two vectors are 
coplanar2. 

As mentioned by Randriamampianina et al.6, who considered the vertical rotating annulus, 
a complex three-dimensional flow may occur from the combined effect of the terrestrial gravity, 
centrifugal and Coriolus forces. By contrast, two-dimensional flows are expected, according to 
Robillard and Torrance7, Ladeinde and Torrance8 and Prud'homme et al.9 for long horizontal 
cylinders and annuli where the effects of end boundaries are negligible. However, if the horizontal 
cylinder is of finite length with differential heating on the two ends, then the treatment of the 
problem must be three-dimensional. This was done by Yang et al.2. 

Of course, the fundamental differences arising from the specific orientation of the rotation 
axis should vanish when the terrestrial gravity force becomes negligible compared to the 
centrifugal force. For this asymptotic limit, long cylinders and annuli will develop convective 
cells with their axes parallel to that rotation axis. As mentioned by Busse10, the centrifugal 
force replaces gravity and the problem may be compared to the Benard convection in a layer 
heated from below. The general two-dimensional study undertaken by Ladeinde and Torrance11 

on rotating cylinders includes this asymptotic limit, for the case of a uniformly distributed heat 
sink and uniform temperature imposed on the circular boundary. It provides the critical Rayleigh 
number at which Benard cells will occur. 

In the present investigation, the problem of convective heat transfer in an annular fluid layer 
under the influence of a centrifugal force field is investigated. The centrifugal force field dominates 
and the normal (terrestrial) gravity is considered negligible. The outer boundary is heated with 
a constant heat flux while the inner boundary is adiabatic (no heat loss). Under such conditions 
the problem is essentially a transient one, the temperature increasing continuously with time. 
However, the induced motion does not depend on the temperature itself, but on (spatial) 
temperature gradients. Those temperature gradients are expected to become time-dependent 
after an initial transient, giving rise to a steady state flow field identical to the one that would 
be obtained at constant (time independent) temperature, if a uniformly distributed heat sink 
was imposed between the two boundaries. A two-dimensional simulation in (r, φ) coordinates 
of the annulus is carried out. The problem is studied numerically by using a finite difference 
method and also analytically using a "concentric" flow assumption similar to the parallel flow 
approach used by Sen et al.12 for an elongated cavity. Effects of various parameters, such as 
the Rayleigh number and the radius ratio, are examined and comparisons between numerical 
and analytical results are presented. 
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STATEMENT OF THE PROBLEM 

The problem is solved in a non inertial coordinate system rotating along with the enclosure at 
constant angular velocity Ω', as shown in Figure 1. The inner boundary of radius r'1 is assumed 
to be perfectly insulated (adiabatic conditions). A uniform heat flux is imposed 

on the outer boundary of radius r'2. Fluid properties are taken to be constant except the density 
of the fluid for which the validity of the Oberbeck-Boussinesq approximation is assumed. The 
governing equations in the rotating frame are obtained from the theory of rotating flows13. 

Introducing the dimensionless variables: 

where T'1* is a reference temperature chosen at r' = r'1 and φ = 0. p1 is the density corresponding 
to T'1*, ∆T' is a characteristic temperature and p'd = p' — p1Ω2r'2/2 is the dynamic pressure. 
Other symbols are defined in the nomenclature. 

The governing equations in dimensionless form are: 
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where r and z are unit vectors in the radial and axial directions, respectively. Ra = βΩ'2r'51q'/vak 
is the Rayleigh number based on the constant heat flux and the centrifugal force field, Pr = v/a. 
is the Prandtl number and Re = Ωr'21/v is the rotational Reynolds number. For R → 1, it is more 
appropriate to use a modified Rayleigh number based on the gap r'2 — r'1, Ra* = Ra(R - 1)4. 
The second term on the left hand side of (3) is the Coriolis term which has, in fact, no dynamic 
effect within the two-dimensional framework considered here. 

With the present thermal boundary conditions, the temperature at every point will increase 
continuously with time. However, as mentioned earlier, the temperature gradients are expected 
to become time independent after an initial transient. Since the flow field depends on temperature 
gradients, it should reach a steady state. When this steady state is reached, the temperature itself 
increases linearly with time at the same rate for every point in the flow domain. As described 
by Robillard and Vasseur14, the temperature may then be re-defined as T* = T + St so that 
its asymptotic time dependence is treated in a separate term. Equation (4) becomes: 

where S acts as fictitious dimensionless source term uniformly distributed over the flow domain. 
This source term must compensate for the incoming heat from the outer boundary, i.e. 
S = 2R/(R2 - 1). 

The temperature field satisfies the Neuman boundary conditions: 

and the velocity field components satisfy the no-slip conditions. The pressure gradient and the 
Coriolis term are eliminated by taking the curl of (3) and the following vorticity equation is 
obtained: 

where the dimensionless vorticity is defined as: 

Velocity components and vorticity may be expressed in terms of a stream function Ψ 

No net flow should exist around the annulus and consequently, the value of the stream function 
on the two boundaries is set to zero: 

r = 1, R: Ψ = 0 (12) 

The no-slip boundary condition yields: 
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ANALYTICAL SOLUTION 

For steady state conditions, a concentric flow approach analogous to the parallel flow approach 
for shallow cavities used by Sen et al.12 and Robillard and Vasseur14 is considered for the 
present problem. In the context of elongated cavities, it should be recalled that the critical 
Rayleigh number for incipient convection with heating from below by a constant heat flux 
corresponds to the occurrence of a single cell, i.e. to the lowest wave number15. For the present 
problem, one should expect one pair of convective cells at incipient convection. A schema of 
the expected flow is shown in Figure 2 where in the core regions the flow is concentric, with: 

u = 0 (14) 
v = v(r) (15) 

v satisfies the zero net flow condition (12), i.e.: 

Therefore, in each core region, there are two layers (inner and outer) flowing in opposite 
directions. Those layers are connected in the "end regions" shown in Figure 2, where conditions 
given by (14) and (15) are not fulfilled. 

The present analytical solution concerns the core region. Within each core region of Figure 
2, the temperature field can be expressed as a sum of an unknown function of r and a linear 
function of φ. As a result, the temperature field must be of the following form: 

T = θ(r) + Cφ (17) 
where C is an unknown temperature gradient in the φ direction. C is constant within one core 
region but changes its sign from one core region to another around the annulus. The stream 
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function itself depends exclusively on r: 
Ψ = Ψ(r) (18) 

Substituting (17) into (5), replacing the vorticity in (8) by its expression (11) and considering 
condition given by (18), we obtain: 

L2Ψ = Ra C (20) 

Equations (19) and (20) are solved for θ and Ψ using boundary conditions given by (6), (7), 
(12) and (13): 

θ = Ra C2Z(r) + θc (21) 
and 

Ψ = Ra CF(r) (22) 

where Z(r) and F(r) are parametric functions of the radius ratio: 

The parameters involved in equations (23) and (24) are: 

θc in (21) is the pure conduction temperature field: 

The velocity component v is obtained from the stream function: 

An additional constraint lies in the fact that the heat transported across any transversal section 
should be zero so that: 

using equations (26) and (17) for v and T respectively, we obtain from (27): 
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We substitute the solutions θ and Ψ given by (21) and (22) into (28) and integrate to get: 
Ra2C3I1 + RaCI2 + C = 0 (29) 

where 

The non-trivial solutions of (29) are: 

Since I1 is a positive quantity, C is real provided that Ra > — 1/I2, where I2 is a negative 
quantity. The onset of convection corresponds to: 

A Nusselt number for the core region may be defined as: 

where ∆0 = 0(R) — θ(1) is the dimensionless temperature difference. ATc stands for the pure 
conduction regime. From (21), (23) and (25), we obtain: 

NUMERICAL STUDY 

The numerical computations are carried out using standard finite difference methods. The 
governing equations (5) and (8) for temperature and vorticity are solved with an alternating 
direction implicit method (A.D.I.). A successive overrelaxation method is used to solve the 
Poisson equation (11) for the stream function. All derivatives are discretized according to the 
Taylor-based second order central difference scheme for a regular mesh size. The A.D.I. approach 
in the φ direction is based on the fact that any physical variable f should satisfy periodic 
conditions of the form: 

f(r, φ) = f(r, φ + 2Π) (35) 
With periodic boundary conditions in the φ-direction, the resulting matrix is no more 

tridiagonal. However, it is possible, by a matrix partition procedure, to bring back the problem 
to the solution of tridiagonal matrices for which efficient recurrence formula such as the Thomas 
algorithm are available. More details about the partition technique may be found in Phillips' 
work16. The boundary values for the vorticity at r = 1, R are obtained by performing power 
series expansion in ∆r of the stream function and expressing the derivatives of Ψ in terms of 
the vorticity. The results presented are obtained using a grid size of 18 x 36 corresponding to 
the r-φ directions. To examine the influence of grid size on the flow field, some cases with R= 1.5 
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were also calculated with a 36 x 72 grid size. Flow and temperature fields were practically identical 
to the results obtained with the 18 x 36 grid size for the Rayleigh number Ra as large as 107 

(Ra* = 625000). The nonlinear coupled equations (2) to (4) are solved iteratively with a time step 
of 5 x 10 -5 for small Rayleigh numbers and radius ratios and 2 x 10 -5 for high Rayleigh numbers 
and radius ratios. 

RESULTS AND DISCUSSION 

In this section, numerical results are compared with the analytical results from the concentric 
flow approach. Numerical solutions are obtained for Pr = 1 and for the ranges Rac < Ra < 107 

and 1 < R < 2.5. As mentioned earlier, the numerical solution of governing equations (5), (8) 
and (11) starts from initial conditions with transient flow (Ψ) and temperature (T) fields evolving 
towards a final steady state. The following discussion deals with steady-state results. Also it must 
be mentioned that the choice of a given Prandtl number for the numerical solution is of no 
consequence in the comparison of the numerical results with the analytical approach since this 
latter concerns the core region (see Figure 2) where no inertia effects are present. However, at 
values of Pr much below unity, inertia effects of the end regions become important and conditions 
given by (14), (15) and (16) cannot be fulfilled. 

The pure conduction temperature field for this particular problem produces a stable rest state 
with concentric isotherms perpendicular to the force field. Motion will occur only beyond a 
given threshold in terms of a critical Rayleigh number Rac. This critical Rayleigh number may 
be predicted analytically with the hypothesis of the concentric flow which leads to equation (32). 
Figure 3 gives Ra*c = Rac(R — 1)4 as a function of the aspect ratio R. The value Ra*c = 1440 for 
R → 1 corresponds to the limit case of a horizontal layer subjected to a normal gravity field. 
This case was treated in the past by Kulacki and Goldstein17 for which a value Rac = 1440 was 
obtained and more recently by Vasseur and Robillard18. 

In a manner analogous to the parallel flow hypothesis for the shallow cavity (see for instance 
Sen et al.19), results obtained in the present analytical framework are valid provided that the 
radial velocity component u is vanishingly small over a finite range of the coordinate φ, i.e., 
provided that the core regions of Figure 2 have a finite extent. 
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At a given radius ratio, this condition is best fulfilled when there are only two end regions 
(or equivalently two convective cells) around the annulus. End regions are required to connect 
together in a closed loop the inner and outer flows which circulate in opposite φ directions 
within the core region and, consequently, there cannot be less than two convective cells around 
the annulus. 

Unstable layers with thermal boundary conditions of the Neuman type are characterized by 
incipient convection corresponding to the lowest wavenumber compatible with the geometry 
considered. In the present case, we expect the first convective motion beyond the threshold given 
in Figure 3 to contain two convective cells. Numerical tests were conducted at R = 2 for Ra 
values slightly above Rac = 920. The numerical computations were started from initial conditions 
corresponding to a motionless fluid with a pure conduction temperature field. With those 
conditions, two-cell flow patterns were indeed obtained for Ra < 1100. For Ra > 1100 four-cell 
flow patterns did occur. Such a behaviour is not surprising since the threshold for the occurrence 
of flow configurations with twice the number of cells follows quite closely the lowest threshold 
given in Figure 3. Nevertheless, a stable two-cell flow pattern can be obtained at relatively high 
Ra if the numerical computation starts from initial conditions containing two cells. 

Flow and temperature fields obtained numerically for the same radius ratio R = 1.5 but for 
three different Rayleigh numbers Ra = 1.9 x 104, 2.8 x 104 and 105 (Ra* = 1187.5, 1750 and 
6250) are shown in Figure 4. These flow and temperature fields are represented by streamlines 
(left) and isotherms (right), respectively. Each set contains two cells and was obtained by starting 
the numerical computation from initial conditions containing two cells. It is seen that for each 
of the three cases the convective cells are symmetric with respect to a diameter oriented vertically 
on the figure. However, there is no preferred position in the φ direction and the horizontal 
isotropy characterizing the Benard cells in a fluid layer of infinite extent becomes a "circular 
isotropy" for the present problem. The case shown in Figure 4a is slightly above the critical 
Rayleigh number Ra*c = 1100.87, value obtained from the concentric flow analysis for a radius 
ratio R = 1.5. The regime is pseudo-conductive with a weak departure of the isotherms from 
the concentric configuration. With increasing Ra*, the distortion of isotherms is amplified but 
the two-cells pattern can be maintained, as it can be seen in Figures 4b, c. However, at much 
higher Rayleigh numbers it was found (not shown here) that this flow field was broken and 
multi-cells were produced. 

A flow field with four cells such as the one shown in Figure 5a can be obtained numerically 
by using initial conditions containing four cells. It is even possible to obtain a flow pattern 
containing more cells by using appropriate initial conditions. 

It is observed in Figure 5a that the conditions given by (14) and (15) are not fulfilled over a 
finite range of the coordinate φ. This means that the concentric flow approach is not appropriate 
to describe the actual flow field. The same inadequacy occurs when the radius ratio is increased. 
For instance, the flow field with R = 2.5 and Ra = 1000 (Ra* = 5062.5) shown in Figure 5b, 
has a much reduced core region, by comparison to the cases shown in Figures 4a, b, c. Therefore, 
results from the concentric flow analysis are restricted to radius ratio not too far from unity. 

Results from the numerical calculations are compared with the analytical solution using the 
concentric flow assumption in Figures 6, 7 and 8. They show, respectively, the extremum values 
of the stream function ΨE, the Nusselt number Nu, as defined by (34) and some azimuthal velocity 
distributions. All numerical results in these figures involve two-cell flow configurations and are 
taken at a cross-section midway between end regions. ΨE and Nu are given as functions of the 
Rayleigh number Ra* for radius ratios varying from 1.2 to 2.5. It is observed in Figure 6 that 
the agreement between numerical results and analytical predictions is good for the range of 
Rayleigh numbers considered; this is true even at aspect ratios of 2.5. Each of the analytical 
curves starts at a critical Rayleigh number Ra* = Rac(R — 1)4, where Rac is given by (32). 
Numerical results at increasing Rayleigh numbers were obtained step by step using as initial 
conditions the previous results at lower Rayleigh numbers. This process is pursued until the 
two-cell flow breaks into a multi-cell pattern. 
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In Figure 7, it is seen that the effect of the radius ratio on the Nusselt number is less important 
than the one observed in Figure 6, i.e., the curves corresponding to different R are closely spaced. 
The ordering of the numerical results follows the analytical predictions. However, with increasing 
Rayleigh number, there is a tendency for the numerical values to be above the analytical curves. 
With the Rayleigh number increasing further to very large values, the Nusselt number, as 
predicted by the concentric flow analysis reaches an asymptotic value function of the radius 
ratio. Practically, however, this prediction does not hold since the flow breaks into many cells 
at Rayleigh numbers much below this asymptotic limit. 
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The non-dimensional velocity v in the φ direction is given in Figure 8 as a function of the 
radius r for the three Rayleigh numbers of Figure 4 (Ra* = 1187.5, 1750 and 6250) and for the 
radius ratio R = 1.5 of Figure 4a, b, c. In order to present a single analytical curve, analytical 
and numerical results for v are divided by Ra C where C is the theoretical temperature gradient 
obtained from equation (28). It is seen that the numerical results agree in a satisfactory way 
with the analytical prediction. 
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CONCLUSIONS 

Natural convection in a fluid contained between two horizontal concentric cylinders has been 
investigated both analytically and numerically for the case of an adiabatic inner boundary and 
a constant heat flux imposed on the outer boundary in the presence of a centrifugal force field. 
An analytical approach, based on a concentric flow assumption transforms the governing 
equations into ordinary differential equations. The critical Rayleigh number for the onset of 
convection is predicted by this approach. Moreover at finite amplitude convection, this approach 
predicts the flow and temperature fields within the core region. A numerical simulation of the 
full governing equations has also been performed for the range Rac < Ra < 106. A good 
agreement is found between the concentric flow analytical approach and the numerical simulation 
for radius ratio <3.0. It is found from the numerical simulation that the flow pattern near the 
critical Rayleigh consists of two cells even if the radius ratio is near unity. However, additional 
pairs of cells are possible when the Rayleigh number is increased from the critical value. 
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APPENDIX 

The value of I1 and I2 in (30), are given by the following expressions: 

where the coefficients a, and bi, are: 
a, = (4c + 2b- 3a)/16 b4 = [a( - a - b2 + b) - 4b2b + d]/256 
a2 = (16b - 12a + 1)/256 b5 = -(2cb2 - 2(2d - c)b + (c + 6d)a)/32 
a3 = 1/192 b6 = -5a/3072 
a4 = (4a - 1)/64 b7 = (4a(a - b2 - b) + c - 4d)/256 
a5 = (3a - 2b)/8 b8 = -(a(5c - 6d) + b(4d - 2c))/16 
a6 = -R(aR2 + 2c)/4 b9 = - (a 2 + c/2)/64 
b1 = -1/32768 b10 = -(2a(d - c) + cb)/8 
b2 = b-3a/2 b11 = -cd/2 
b3 = (17a/2 - 56)/3072 b12 = -ca/8 b13 = -c2/6 


